McLaren F1

Today we continue our path in the top 100 most beautiful cars ever with the McLaren F1.The F1 is an important car that made its mark thru history by its performance but not last by its good looks.
Originally a concept conceived by Gordon Murray, he convinced Ron Dennis to back the project and engaged Peter Stevens to design the exterior of the car. On 31 March 1998, it set the record for the fastest road car in the world, topping at 231 mph (372 km/h) with rev limiter on, and 243 mph (391 km/h) with rev limiter removed.
The car features numerous proprietary designs and technologies; it was designed and built with no compromises to the original design concept laid out by Gordon Murray. It is lighter and has a more streamlined structure than even most of its modern rivals and competitors despite having one seat more than most similar sports cars, with the driver's seat located in the middle (and slightly forward of the passengers seating position providing excellent driving visibility). It features a powerful engine and is somewhat track oriented, but not to the degree that it compromises everyday usability and comfort. It was conceived as an exercise in creating what its designers hoped would be considered the ultimate road car. Despite not having been designed as a track machine, a modified race car edition of the vehicle won several races, including the 24 Hours of Le Mans in 1995, where it faced purpose-built prototype race cars. Production began in 1992 and ended in 1998. In all, 106 cars were manufactured, with some variations in the design.[2]
In 1994, the British car magazine Autocar stated in a road test regarding the F1, "The McLaren F1 is the finest driving machine yet built for the public road." and that "The F1 will be remembered as one of the great events in the history of the car, and it may possibly be the fastest production road car the world will ever see." Chief engineer Gordon Murray's design concept was a common one among designers of high-performance cars: low weight and high power. This was achieved through use of high-tech and expensive materials like carbon fibre, titanium, gold, magnesium and kevlar. The F1 was the first production car to use a carbon-fibre monocoque chassis.
Gordon Murray had been thinking of a three-seat sports car since his youth, but when Murray was waiting for a flight home from the fateful Italian Grand Prix in 1988; Murray drew a sketch of a three seater sports car and proposed it to Ron Dennis, pitched as the idea of creating the ultimate road car, a concept that would be heavily influenced by the Formula One experience and technology of the company and thus reflect that skill and knowledge through the McLaren F1.
Murray declared that [4] "During this time, we were able to visit with Ayrton Senna (the late F1 Champion) and Honda's Tochigi Research Center. The visit related to the fact that at the time, McLaren's F1 Grand Prix cars were using Honda engines. Although it's true I had thought it would have been better to put a larger engine, the moment I drove the Honda NSX, all the benchmark cars—Ferrari, Porsche, Lamborghini—I had been using as references in the development of my car vanished from my mind. Of course the car we would create, the McLaren F1, needed to be faster than the NSX, but the NSX's ride quality and handling would become our new design target. Being a fan of Honda engines, I later went to Honda's Tochigi Research Center on two occasions and requested that they consider building for the McLaren F1 a 4.5 litre V12 or V24. I asked, I tried to persuade them, but in the end could not convince them to do it, and the McLaren F1 ended up equipped with a BMW engine."
Later, a pair of Ultima MK3 kit cars, chassis numbers 12 and 13, "Albert" and "Edward", the last two MK3s, were used as "mules" to test various components and concepts before the first cars were built. Number 12 was used to test the gearbox with a 7.4 litre Chevrolet V8 to mimic the torque of the BMW V12, plus various other components like the seats and the brakes. Number 13 was the test of the V12, plus exhaust and cooling system. When McLaren was done with the cars they destroyed both of them to keep away the specialist magazines and because they did not want the car to be associated with "kit cars".
The car was first unveiled at a launch show, 28 May 1992, at The Sporting Club in Monaco. The production version remained the same as the original prototype (XP1) except for the wing mirror which, on the XP1, was mounted at the top of the A-pillar. This car was deemed not road legal as it had no indicators at the front; McLaren was forced to make changes on the car as a result (some cars, including Ralph Lauren's, were sent back to McLaren and fitted with the prototype mirrors). The original wing mirrors also incorporated a pair of indicators which other car manufacturers would adopt several years later.
The car's safety levels were first proved when during a testing in Namibia in April 1993, a test driver wearing just shorts and t-shirt hit a rock and rolled the first prototype car several times. The driver managed to escape unscathed. Later in the year, the second prototype (XP2) was especially built for crashtesting and passed with the front wheel arch untouched.
Gordon Murray insisted that the engine for this car be naturally aspirated to increase reliability and driver control. Turbochargers and superchargers increase power but they increase complexity and can decrease reliability as well as introducing an additional aspect of latency and loss of feedback. The ability of the driver to maintain maximum control of the engine is thus decreased. Murray initially approached Honda for a powerplant with 550 bhp (410 kW; 560 PS), 600 mm (23.6 in) block length and a total weight of 250 kg (551 lb), it should be derived from the Formula One powerplant in the then-dominating McLaren/Honda cars.
When Honda refused, Isuzu, then planning an entry into Formula One, had a 3.5 V12 engine being tested in a Lotus chassis. The company was very interested in having the engine fitted into the F1. However, the designers wanted an engine with a proven design and a racing pedigree.
In the end BMW took an interest, and the motorsport division BMW M headed by engine expert Paul Rosche[5] designed and built Murray a 6.1 L (6064 cc) 60-degree V12 engine called the BMW S70/2.[6] At 627 hp (468 kW; 636 PS) and 266 kg (586 lb) the BMW engine ended up 14% more powerful and 16 kg (35 lb) heavier than Gordon Murray's original specifications, with the same block length. It has an aluminium alloy block and head, with 86 mm (3.4 in) x 87 mm (3.4 in) bore/stroke, quad overhead camshafts with variable valve-timing (a relatively new and unproven technology for the time) for maximum flexibility of control over the four valves per cylinder, and a chain drive for the camshafts for maximum reliability. The engine is dry sump.
The carbon fibre body panels and monocoque required significant heat insulation in the engine compartment, so Murray's solution was to line the engine bay with a highly efficient heat-reflector: gold foil. Approximately 16 g (0.8 ounce) of gold was used in each car.[7]
The road version used a compression ratio of 11:1 to produce 627 hp (468 kW; 636 PS)[6] at 7400 rpm and torque output of 480 ft·lb (651 N·m) at 5600 rpm.[8] The engine has a redline rev limiter set at 7500 rpm.
In contrast to raw engine power, a car's power-to-weight ratio is a better method of quantifying acceleration performance than the peak output of the vehicle's powerplant. The standard F1 achieves 550 hp/ton (403 kW/tonne), or just 3.6 lb/hp. Compare with the Ferrari Enzo at 434 hp/ton (314 kW/tonne) (4.6 lb/hp), the Bugatti Veyron at 530.2 hp/ton (395 kW/tonne) (4.1 lb/hp), and the SSC Ultimate Aero TT with 1003 hp/ton (747.9 kW/tonne) (2 lb/hp).
The cam carriers, covers, oil sump, dry sump, and housings for the camshaft control are made of magnesium castings. The intake control features twelve individual butterfly valves and the exhaust system has four Inconel catalysts with individual Lambda-Sond controls. The camshafts are continuously variable for increased performance, using a system very closely based on BMW's VANOS variable timing system for the BMW M3;[9] it is a hydraulically-actuated phasing mechanism which retards the inlet cam relative to the exhaust cam at low revs, which reduces the valve overlap and provides for increased idle stability and increased low-speed torque. At higher RPM the valve overlap is increased by computer control to 42 degrees (compare 25 degrees on the M3)[9] for increased airflow into the cylinders and thus increased performance.
To allow the fuel to atomise fully the engine uses two Lucas injectors per cylinder, with the first injector located close to the inlet valve – operating at low engine RPM – while the second is located higher up the inlet tract – operating at higher RPM. The dynamic transition between the two devices is controlled by the engine computer.[9]
Each cylinder has its own miniature ignition coil. The closed-loop fuel injection is sequential. The engine has no knock sensor as the predicted combustion conditions would not cause this to be a problem. The pistons are forged in aluminium.
Only 106 cars were manufactured, 64 of which were the standard street version (F1), 5 were LMs (tuned versions), 3 were longtail roadcars (GT), 5 prototypes (XP), 28 racecars (GTR), and 1 LM prototype (XP LM). Production began in 1992 and ended in 1998.[2] At the time of production one machine took around 3.5 months to make.[3]
Up until 1998, when McLaren produced and sold the standard F1 models, they had a price tag of around 970,000 USD.[6] Today the cars can sell for up to nearly twice that of the original price, due to the performance and exclusivity of the machine. They are expected to further increase in value over time.
Although production stopped in 1998, McLaren still maintains an extensive support and service network for the F1. There are eight[22] authorised service centres throughout the world, and McLaren will on occasion fly a specialised technician to the owner of the car or the service centre. All of the technicians have undergone dedicated training in service of the McLaren F1. In cases where major structural damage has occurred, the car can be returned to McLaren directly for repair.[22]
On 29 October 2008, an F1 road car (chassis number 065) was sold at an RM Automobiles of London auction for £2,530,000 (~US$4,100,000). This was the car from the McLaren showroom on Park Lane, London. With only 484 kilometres on its odometer, this pristine example set a world record for the highest price ever paid for an F1 road car.

Performance

The F1 remains as of 2011 one of the fastest production cars ever made; as of July 2010 it is succeeded by very few cars including the Koenigsegg CCR,[24] the Bugatti Veyron,[25] the SSC Ultimate Aero TT,[26] and the Bugatti Veyron Super Sport. However, all of the superior top speed machines use forced induction to reach their respective top speeds – making the McLaren F1 the fastest naturally aspirated production car in the world.

Acceleration






  • 0-30 mph (48 km/h): 1.8 s
  • 0–60 mph (97 km/h): 3.2 s
  • 0–100 mph (160 km/h): 6.3 s
  • 0–124.28 mph (200.01 km/h): 9.4 s
  • 0–150 mph (240 km/h): 12.8 s 
  • 0–200 mph (320 km/h): 28 s
  • 30 mph (48 km/h)-50 mph (80 km/h): 1.8 s, using 3rd/4th gear
  • 30 mph (48 km/h)-70 mph (110 km/h): 2.1 s, using 3rd/4th gear
  • 40 mph (64 km/h)-60 mph (97 km/h): 2.3 s, using 4th/5th gear
  • 50 mph (80 km/h)-70 mph (110 km/h): 2.8 s, using 5th gear
  • 180 mph (290 km/h)-200 mph (320 km/h): 7.6 s, using 6th gear
  • 0–400 m: 11.1 s at 138 mph (222 km/h)
  • 0–1000 m: 19.6 s at 177 mph (285 km/h)
  • Top speed

  • With rev limiter on: 231 mph (372 km/h)
  • With rev limiter removed: 243 mph (391 km/h)
  • Ameritech

    The American model of the McLaren F1, the Ameritech McLaren F1 is a modified standard McLaren F1 to meet the U.S. regulations; to comply with said regulations the car had to meet stricter emission requirements which increased the weight and also reduced the power somewhat. Due to a lack of airbags for the passengers, the Ameritech edition only has the single driver seat in the middle.
     

0 comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...